with the airplane in the ground attitude. - (c) Each fuel tank sump must have an accessible drain that— - (1) Allows complete drainage of the sump on the ground; - (2) Discharges clear of each part of the airplane; and - (3) Has manual or automatic means for positive locking in the closed position. #### §25.973 Fuel tank filler connection. Each fuel tank filler connection must prevent the entrance of fuel into any part of the airplane other than the tank itself. In addition— - (a) [Reserved] - (b) Each recessed filler connection that can retain any appreciable quantity of fuel must have a drain that discharges clear of each part of the airplane; - (c) Each filler cap must provide a fuel-tight seal; and - (d) Each fuel filling point must have a provision for electrically bonding the airplane to ground fueling equipment. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–40, 42 FR 15043, Mar. 17, 1977; Amdt. 25–72, 55 FR 29785, July 20, 1990; Amdt. 25–115, 69 FR 40527, July 2, 2004] # § 25.975 Fuel tank vents and carburetor vapor vents. - (a) Fuel tank vents. Each fuel tank must be vented from the top part of the expansion space so that venting is effective under any normal flight condition. In addition— - (1) Each vent must be arranged to avoid stoppage by dirt or ice formation; - (2) The vent arrangement must prevent siphoning of fuel during normal operation; - (3) The venting capacity and vent pressure levels must maintain acceptable differences of pressure between the interior and exterior of the tank, during— - (i) Normal flight operation; - (ii) Maximum rate of ascent and descent: and - (iii) Refueling and defueling (where applicable): - (4) Airspaces of tanks with interconnected outlets must be interconnected: - (5) There may be no point in any vent line where moisture can accumulate with the airplane in the ground attitude or the level flight attitude, unless drainage is provided; and - (6) No vent or drainage provision may end at any point— - (i) Where the discharge of fuel from the vent outlet would constitute a fire hazard: or - (ii) From which fumes could enter personnel compartments. - (b) Carburetor vapor vents. Each carburetor with vapor elimination connections must have a vent line to lead vapors back to one of the fuel tanks. In addition— - (1) Each vent system must have means to avoid stoppage by ice; and - (2) If there is more than one fuel tank, and it is necessary to use the tanks in a definite sequence, each vapor vent return line must lead back to the fuel tank used for takeoff and landing. #### §25.977 Fuel tank outlet. - (a) There must be a fuel strainer for the fuel tank outlet or for the booster pump. This strainer must— - (1) For reciprocating engine powered airplanes, have 8 to 16 meshes per inch; and - (2) For turbine engine powered airplanes, prevent the passage of any object that could restrict fuel flow or damage any fuel system component. - (b) [Reserved] - (c) The clear area of each fuel tank outlet strainer must be at least five times the area of the outlet line. - (d) The diameter of each strainer must be at least that of the fuel tank outlet. - (e) Each finger strainer must be accessible for inspection and cleaning. [Amdt. 25–11, 32 FR 6913, May 5, 1967, as amended by Amdt. 25–36, 39 FR 35460, Oct. 1, 1974] ### §25.979 Pressure fueling system. For pressure fueling systems, the following apply: (a) Each pressure fueling system fuel manifold connection must have means to prevent the escape of hazardous quantities of fuel from the system if the fuel entry valve fails. #### § 25.981 - (b) An automatic shutoff means must be provided to prevent the quantity of fuel in each tank from exceeding the maximum quantity approved for that tank. This means must— - (1) Allow checking for proper shutoff operation before each fueling of the tank; and - (2) Provide indication at each fueling station of failure of the shutoff means to stop the fuel flow at the maximum quantity approved for that tank. - (c) A means must be provided to prevent damage to the fuel system in the event of failure of the automatic shutoff means prescribed in paragraph (b) of this section. - (d) The airplane pressure fueling system (not including fuel tanks and fuel tank vents) must withstand an ultimate load that is 2.0 times the load arising from the maximum pressures, including surge, that is likely to occur during fueling. The maximum surge pressure must be established with any combination of tank valves being either intentionally or inadvertently closed. - (e) The airplane defueling system (not including fuel tanks and fuel tank vents) must withstand an ultimate load that is 2.0 times the load arising from the maximum permissible defueling pressure (positive or negative) at the airplane fueling connection. [Amdt. 25–11, 32 FR 6913, May 5, 1967, as amended by Amdt. 25–38, 41 FR 55467, Dec. 20, 1976; Amdt. 25–72, 55 FR 29785, July 20, 1990] ## §25.981 Fuel tank ignition prevention. - (a) No ignition source may be present at each point in the fuel tank or fuel tank system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by: - (1) Determining the highest temperature allowing a safe margin below the lowest expected autoignition temperature of the fuel in the fuel tanks. - (2) Demonstrating that no temperature at each place inside each fuel tank where fuel ignition is possible will exceed the temperature determined under paragraph (a)(1) of this section. This must be verified under all probable operating, failure, and malfunction conditions of each component whose oper- - ation, failure, or malfunction could increase the temperature inside the tank. - (3) Demonstrating that an ignition source could not result from each single failure, from each single failure in combination with each latent failure condition not shown to be extremely remote, and from all combinations of failures not shown to be extremely improbable. The effects of manufacturing variability, aging, wear, corrosion, and likely damage must be considered. - (b) Except as provided in paragraphs (b)(2) and (c) of this section, no fuel tank Fleet Average Flammability Exposure on an airplane may exceed three percent of the Flammability Exposure Evaluation Time (FEET) as defined in Appendix N of this part, or that of a fuel tank within the wing of the airplane model being evaluated, whichever is greater. If the wing is not a conventional unheated aluminum wing, the analysis must be based on an assumed Equivalent Conventional Unheated Aluminum Wing Tank. - (1) Fleet Average Flammability Exposure is determined in accordance with Appendix N of this part. The assessment must be done in accordance with the methods and procedures set forth in the Fuel Tank Flammability Assessment Method User's Manual, dated May 2008, document number DOT/FAA/AR-05/8 (incorporated by reference, see § 25.5). - (2) Any fuel tank other than a main fuel tank on an airplane must meet the flammability exposure criteria of Appendix M to this part if any portion of the tank is located within the fuselage contour. - (3) As used in this paragraph, - (i) Equivalent Conventional Unheated Aluminum Wing Tank is an integral tank in an unheated semi-monocoque aluminum wing of a subsonic airplane that is equivalent in aerodynamic performance, structural capability, fuel tank capacity and tank configuration to the designed wing. - (ii) Fleet Average Flammability Exposure is defined in Appendix N to this part and means the percentage of time each fuel tank ullage is flammable for a fleet of an airplane type operating over the range of flight lengths. - (iii) Main Fuel Tank means a fuel tank that feeds fuel directly into one